Short Reports 587

CHCl₃-MeOH-MeCOEt (12:2:1) on polyamide TLC; purple color on paper in UV light to purple with UV+NH₃; mp 192-196°. UV spectral data: $\lambda_{\max}^{\text{MeOH}}$; 240s, 290s, 342 nm; $\lambda_{\max}^{\text{NaOMe}}$: 298, 353 nm; $\lambda_{\max}^{\text{NaCAc}}$: 330s, 372 nm; $\lambda_{\max}^{\text{AlCI}_3/\text{HCI}}$: 315s, 366 nm; $\lambda_{\max}^{\text{NaOAe}}$: 290s, 342 nm; $\lambda_{\max}^{\text{NaOAe}}$: 290, 352 nm. The flavanone was separated by Si/gel TLC, C_6H_0 -EtOAc-Me₂CO (8:1:1); R_f 0.86; purple on paper over UV light, remaining purple with NH₃. UV data: $\lambda_{\max}^{\text{MeOH}}$: 290, 340 nm; $\lambda_{\max}^{\text{NaOMe}}$: 293, 355 nm; $\lambda_{\max}^{\text{AlCI}_3/\text{HCI}}$: 225, 314, 385 nm; $\lambda_{\max}^{\text{AlCI}_3/\text{HCI}}$: 225, 314, 385 nm; $\lambda_{\max}^{\text{NaOAc}/\text{H}_3\text{BO}_3}$: 291, 335 nm. MS: $\lambda_{\max}^{\text{MeO}}$ 284 (M+; 100%); $\lambda_{\max}^{\text{MeO}}$ (62%), $\lambda_{\max}^{\text{MeO}}$ 104 (51%) and $\lambda_{\max}^{\text{MeO}}$ 152 (69%).

Acknowledgements—AES acknowledges support by an NSF grant (GY-7173) and Trenton State College for release time. TJM wishes to acknowledge financial support from the Robert A. Welch Foundation (Grant F-130), the National Institutes of Health (Grant HDO 4488) and the National

Science Foundation (Grant DEB 76-09320). The NMR spectra were recorded by Dr. Masayuki Sakakibara.

REFERENCES

- 1. Wollenweber, E. (1972) Phytochemistry 11, 425.
- Star, A. E., Rösler, H., Mabry, T. J. and Smith, D. M. (1975) *Phytochemistry* 14, 2275.
- 3. Star, A. E. and Mabry, T. J. (1971) Phytochemistry 10, 2817.
- 4. Nilsson, M. (1961) Acta Chem. Scand. 15, 154.
- 5. Nilsson, M. (1959) Acta Chem. Scand. 13, 750.
- 6. Nilsson, M. (1961) Acta Chem. Scand. 15, 211.
- 7. Bohm, B. A. (1968) Phytochemistry 7, 1687.
- 8. Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970)

 The Systematic Identification of Flavonoids. Springer-Verlag,
 Heidelberg.
- Itagaki, Y., Kurokawa, T., Sasaki, S., Chang, C-T. and Chen, F.-C. (1966) Bull. Chem. Soc. Japan 39, 538.

Phytochemistry, 1978, Vol 17, pp. 587-588 Pergamon Press Printed in England

DIDYMOCARPIN, A NEW FLAVANONE FROM *DIDYMOCARPUS*PEDICELLATA

PRAKASH C. Bose and Narayan Adityachaudhury

Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswa Vidyalaya, Kalyani, Nadia, West Bengal, India

(Received 2 August 1977)

Key Word Index—Didymocarpus pedicellata: Gesneriaceae; didymocarpin: 7-hydroxy-5,6,8-trimethoxyflavanone.

In continuation of our studies on the genus *Didymocarpus* [1-3], we further examined *D. pedicellata*, which elaborates a number of polymethoxylated chalcones, a flavanone and quinochalcones [4-7]. A new flavanone, didymocarpin, has now been isolated from the leaves of *D. pedicellata*, collected from the Western Himalayan regions [8]. It has been identified as 7-hydroxy-5,6,8-trimethoxyflavanone.

EXPERIMENTAL

The dried powdered leaves of D. pedicellata were successively extracted with petrol (bp 60–80°), C_6H_6 and $CHCl_3$. The C_6H_6 extract on chromatography over Si gel furnished a compound crystallizing from petrol– C_6H_6 as pale yellow needles, mp $103-104^\circ$, $[\alpha]_D-12.8^\circ$ (c=0.7, $CHCl_3$), $C_{18}H_{18}O_6$ (M^+ 330). The colour reaction (+ve Shinoda) coupled with the appearance of a double doublet (C_2 - $1H_2$, 5.40δ , J=4 Hz) and a rough triplet (C_3 - $2H_2$, 3.00δ) in the NMR spectrum confirmed the presence of a flavanone system. Functional group analysis revealed the presence of three OMe groups $3H_2$ -singlets at 4.17, 3.97, 3.90δ), a phenolic OH ($1H_2$ -singlet at 5.57δ , exchangeable with D_2O ; γ_{\max}^{KBr} 3430 cm⁻¹) and a conjugated $C=O(\gamma_{\max}^{KBr}$ 1680 cm⁻¹). The IR spectrum disclosed a complex aromatic substitution pattern (1600, 1460, 1430, 1360, 1300, 1240, 1170 cm⁻¹) and an unsubstituted benzene [6] ring (710, 630 cm⁻¹). A $5H_2$ -singlet at 7.47δ indicated the presence of five aromatic protons. The two peaks at m/e 253 (M^+ – 77; M^+ – C_6H_5) and at m/e 226 (M^+ – 104; M^+ – C_6H_5 – $-CH=CH_2$) corresponding to the loss of phenyl and styrene

fragments respectively from the M⁺ ion confirmed that the Bring is unsubstituted. Didymocarpin exhibited two other fragments at m/e 211 (m/e 226–15; m/e 226–Me) and m/e 183 (m/e 211–28; m/e 211–CO). The ready solubility of the flavanone in aq. Na₂CO₃ [9] coupled with the UV spectrum [λ_{\max}^{EOH} 282 (log ε 4.7) am; $\lambda_{\max}^{EOH-0-1(N)NaOH}$ 296 (log ε 4.6) nm] showing a bathochromic shift of 14 nm suggested the presence of an —OH group in the 7-position of didymocarpin. The reduced activity of the 7-OH group towards NaOAc showing no bathochromic shift [$\lambda_{\max}^{EOH-NaOAc}$ 282 nm] of the maximum is presumably due to the presence of two oxygen substituents at 6 and 8 positions [10. 11]. The absence of a shift with AlCl₃ indicates that the 5-OH is methylated.

Acknowledgements—PCB is grateful to CSIR, New Delhi, for the award of a fellowship. The authors are grateful to Dr. B. C. Das, CNRS, Gif-Sur-Yvette, France and Dr. D. N. Roy, University of Toronto, Canada, for spectral measurements.

REFERENCES

- Adityachaudhury, N., Das, A. K., Choudhury, A. and Das Kanungo, P. L. (1976) Phytochemistry 15, 229.
- 2. Adityachaudhury, N. and Das Kanungo, P. L. (1975) Plant Biochem. J. 2, 65.
- 3. Adityachaudhury, N., Das, A. K. and Das Kanungo, P. L. (1976) *Indian J. Chem.* 14B, 909.
- 4. Seshadri, T. R. (1965) J. Indian Chem. Soc. 42, 343.

588 Short Reports

- Agarwal, S. C., Bhaskar, A. and Seshadri, T. R. (1973) Indian J. Chem. 11, 9.
- Bhaskar, A. and Seshadri, T R. (1973) Indian J. Chem. 11, 404
- 7. Siddiqui, S. (1937) J. Indian Chem. Soc. 14, 703.
- 8. The plant material used in this investigation was obtained from the United Chemicals and Allied products, 10 Clive
- Row, Calcutta-1, where a voucher specimen is preserved.
- Venkataraman, K. (1962) In The Chemistry of Flavonoid Compounds (Geissman, T. A. ed.) p. 75 Pergamon Press, Oxford.
- 10. Lee, H. H. and Tan, C. H. (1965) J. Chem. Soc. 2743.
- Farkas, L., Nogradi, M., Sudarsanam, V. and Herz, W. (1966) J. Org. Chem 31, 3228.

Phytochemistry, 1978, Vol. 17, pp. 588-589. Pergamon Press. Printed in England

A NEW FLAVONE GLYCOSIDE FROM THE LEAVES OF PITYRODIA COERULEA

J. B. HARBORNE* and C. I. STACEY†

*Phytochemical Unit, Department of Botany, The University of Reading, RG6 2AS, England; †Chemistry Department, Western Australian Institute of Technology, Bentley, Western Australia, 6102

(Received 13 October 1977)

Key Word Index—Pityrodia coerulea, Verbenaceae; flavone; 6-hydroxyluteolin; 7-rhamnosylxyloside.

6-Hydroxyluteolin and its derivatives have rarely been found in the Verbenaceae [1]. There are two reports of it and its 6- and 3'-monomethyl ethers in Lippia nodiflora [2, 3]; and of the 6-glucoside of 6-hydroxyluteolin 7,3'-dimethyl ether in Citharexylum subserratum [4]. Both these plants are of Asian origin. In the course of a current survey of the flavonoids of the Western Australian Verbenaceae, we have isolated a new glycoside of 6-hydroxyluteolin which forms the major leaf flavonoid of Pityrodia coerulea Ewart & J. White. It appears to be a taxonomic marker for Pityrodia coerulea since it has not been found in any other species of the genus so far investigated. A number of other Pityrodia appear to have 6-hydroxyflavones or flavonols but these seem to occur with methylation rather than with sugar attachment.

The flavone glycoside was isolated as a yellow solid from the 70% ethanolic extraction of the dried leaves. and on acid hydrolysis yielded an aglycone and an equimolecular mixture of rhamnose and xylose (PC). The aglycone was identified as 6-hydroxyluteolin (NMR, MS, UV and co-chromatography). Spectral data suggested that the sugar molecules were attached as a disaccharide to the 7-position of the aglycone and this was confirmed by methylation of the glycoside with dimethyl sulphate followed by acid hydrolysis to give 7-hydroxy-3',4',5,6tetramethoxyflavone. The partially methylated sugars obtained were 2,3,4-tri-O-methyl-L-rhamnose and 2.3di-O-methyl-D-xylose (PC). On the basis of these results, the glycoside was identified as 6-hydroxyluteolin 7-O-L-rhamnosyl- $(1 \rightarrow 4)$ -D-xyloside. Such a sugar combination does not appear to have been reported before in the flavone series [5], though a related flavonol, quercetin 3-rhamnosylxyloside (linkage unspecified) was found in Tilia argentea flowers by Hörhammer et al. [6].

EXPERIMENTAL

Isolation of the glycoside. The dried leaves were extracted with boiling 70% EtOH. The extract was coned and chromatographed Whatman 3MM paper using BAW. The major band $(R_f, 0.23)$

was yellow and was eluted with 80% MeOH The eluate was concd and chromatographed using 15% HOAc The major band (R_f 0.27) eluted with 80% MeOH and concd gave a yellow compound, mp 253–255° (decomp.) PC R_f values were 0.23 in BAW, 0.27 in 15% HOAc, 0.45 in BEW, 0.80 in Forestal and 0.50 in PhOH. UV max (nm) in MeOH were 260sh, 275, 302sh, 344 and spectral shifts with NaOH (band I, $\Delta\lambda$ +47), NaOAc (band II, +2), NaOAc + H₃BO₃ (band I, +32), AlCl₃ (band I, +96), AlCl₃ + HCl (band I, +16) were observed In the MS the compound showed the presence of a parent ion at 302 (C₁₅H₁₀O₇ requires MW 302). The NMR spectrum (run in CDCl₃ as the acetate) gave signals centred at δ 7.58 (2°, 6°-H), 7.3 (5°-H), 6.94 (8-H), 6.53 (3-H), 3.92, 5.19 (sugars), 2.47, 2 36, 2.16, 2.02 (9 acetoxyl's), 1.17 (rhamnosyl Me).

Acid hydrolysis of glycoside. The glycoside in MeOH was hydrolysed with an equal vol. 2M HCl and the aglycone extracted with EtOAc. The aglycone was found to be 6-hydroxyluteolin (UV, NMR of acetate, co-chromatography) and the aq. residue was found to contain-equimolecular amounts of rhamnose and xylose (co-chromatography) Hydrolysis carried out for periods up to 30 s resulted in the same products with no intermediate monoglycoside being found

Methylation of glycoside and hydrolysis of methylated product. The glycoside was methylated with Me₂SO₄–K₂CO₃ in Me₂CO for 36 hr and the methyl ether was hydrolysed with 2M HCl and the aglycone extracted with EtOAc. The aglycone was found to be 7-hydroxy-3',4',5.6-tetramethoxyflavone UV (max) in MeOH were 271, 328 and the spectral shift with NaOAc (band II, +10) was observed. The MS showed a parent ion at 358 (C₁₉H₁₈O₇ requires MW 358) and a major peak at 343 (—Mc) which is characteristic of a methoxyl in the 6-position [7]. The partially methylated sugars were found to be 2,3,4-tri-O-methyl-L-rhamnose and 2,3-di-O-methyl-D-xylose (PC) [8].

Acknowledgements—We wish to thank the staff of the W.A. Herbarium (where a voucher specimen is deposited) for identification of the plant CIS wishes to thank the WAIT for financial support for this project.

REFERENCES

 Harborne, J. B. and Williams, C. A. (1971) Phytochemistry 10, 367.